Dawson College

Mathematics Department

Final Examination

201-NYB-05, Calculus II- Regular Section 03

Thursday, December 17, 2015 9:30-12:30

Student Name:	Student I.D. #:	
Instructor: O.Veres		

INSTRUCTIONS:

- Print your name and student number in the space provided above.
- Attempt all questions. Show all your work.
- All questions are to be answered directly on the examination paper.
- Only the following calculators are permitted: EL-531 XG, EL-531 X
- Translation and regular dictionaries are permitted.
- This examination consists of 14 questions on 19 pages, including this cover page.
- Please ensure that you have a complete exam package before starting.
- The examination must be returned intact.

1. [4 marks] Using the limit of a Riemann Sum, evaluate:

$$\int_0^4 (6x^2 - 5) dx$$

NOTE:
$$\sum_{i=1}^{n} c = cn$$
, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

- 2. [25 marks] Find the following integrals:
 - a. $\int \sec^4(3x)\tan(3x) dx$

b. $\int x^2 \ln x \, dx$

$$\mathsf{c.} \qquad \int \frac{\sqrt{x} \, dx}{x + \sqrt{x}}$$

$$d. \int \frac{x^2}{\sqrt{1-x^2}} dx$$

e.
$$\int \frac{x^2 - x - 7}{(x - 2)(x^2 + 1)} dx$$

3. [4 marks] Find the average value of $f(x) = x\sqrt{x^2 + 36}$ over the interval [0,8]

4. [8 marks] Evaluate the following limits

a.)
$$\lim_{x \to 0} \frac{2x^2 - 3x + \sin 3x}{e^{2x} + 2e^x - 4x - 3}$$

$$b.) \qquad \lim_{x \to 0} (1 + 7x)^{2/x}$$

5. [8 marks] Evaluate the improper integral if it converges or show that it diverges

a.)
$$\int_{2}^{4} \frac{1}{(x-2)^2} dx$$

$$b.) \int_{-\infty}^{0} \frac{xe^{-x^2}}{1 + e^{-x^2}} dx$$

6. [5 marks] Find the length of the curve $y = \frac{1}{8}x^2 - \ln x$ over the interval [2,6]

7. [5 marks] Find the area of the region bounded by the graphs of $y = x^2 + 2$, $y = -x^2 + 4$

8. [8 marks] Find the volume of the solid generated when the region bounded by

$$y = \frac{x}{2}$$
 and $y = \sqrt{x}$ is rotated about

- a. the x-axis
- b. the y-axis

9. [5 marks] Find

$$\frac{d}{dx} \left(\int_{x}^{e^{x}} \csc(t^{2} + 1) dt \right)$$

10. [4 marks] A population of whales grows at a rate $\frac{dP}{dt}=\frac{2}{3}P^{1/4}$, where t is the time in years. How many whales will there be in 38 years if there were 16 when t=0.

11. [4 marks] Find the sum of the infinite series

$$\sum_{n=1}^{\infty} \left(\frac{3^n}{4^{n-1}} + \frac{1}{5^n} \right)$$

 $12.\ [12\ marks]\ Test\ the\ following\ series\ for\ convergence\ or\ divergence\ using\ an\ appropriate\ test.$

Clearly state the test used.

a.)
$$\sum_{n=1}^{\infty} \frac{n^3 + 2n^2 - 1}{2 + n + 4n^3}$$

$$b.) \qquad \sum_{n=1}^{\infty} \frac{(-1)^n 3^{n+1}}{(n-1)!}$$

$$c.) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2n^2 - 1}$$

13. [4 marks] Find the radius of convergence and the open interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{4^n}$$

14. [4 marks] Find the 3rd Taylor polynomial of the function $f(x) = \frac{1}{3x+2}$ at x = 1.

ANSWERS:

- 1. 108
- 2.

a.
$$\frac{1}{12}\sec^4(3x) + C$$
 or $\frac{1}{12}\tan^4(3x) + \frac{1}{6}\tan^2(3x) + C$

b.
$$\frac{1}{9}x^3(3\ln x - 1) + C$$

c.
$$2\sqrt{x} - 2\ln|\sqrt{x} + 1| + C$$
 or $2(\sqrt{x} + 1) - 2\ln|\sqrt{x} + 1| + C$

d.
$$\frac{1}{2}\arcsin x - \frac{x\sqrt{1-x^2}}{2} + C$$

e.
$$-\ln|x-2| + \ln(x^2+1) + 3 \arctan x + C$$

- 3. $\frac{98}{3}$
- 4. a. $\frac{2}{3}$ b. e^{14}
- 5. a. ∞ Diverges b. $-\frac{1}{2}\ln 2$ Converges
- 6. $4 + \ln 3$
- 7. $\frac{8}{3}u^2$
- 8. a. $\frac{8}{3}\pi u^3$ b. $\frac{64}{15}\pi u^3$
- 9. $-\csc(x^2+1)+e^x\csc(e^{2x}+1)$
- 10.81
- 11. $\frac{49}{4}$
- 12. a. diverges, by Test for Divergence, b. converges, by Ratio Test, c. converges, by Comparison or Limit Comparison Test
- 13. R = 4, (-6,2)
- 14. $\frac{1}{5} \frac{3}{25}(x-1) + \frac{9}{125}(x-2)^2 \frac{27}{625}(x-1)^3$