DAWSON COLLEGE MATHEMATICS DEPARTMENT

Final Examination Fall 2016

Calculus 2 (201-203-DW)

<u>Date:</u> Monday, December 19th, 2016 at 9:30am <u>Instructors:</u> C. Farnesi, A. Juhasz, I. Rajput

1. [5 marks] Burger sales (in hundreds of dollars) at Luke's Diner model the function:

$$S(x) = \frac{6x^5 + 3x^2 + 2}{x^3}$$

where x is the number of days since the opening of the diner. Find the **average burger** sales over the interval of day 1 to day 3 since the opening.

2. [7 marks] Use the limit definition of the definite integral (Riemann Sums) to evaluate

$$\int_{1}^{6} (x^2 - 3x) dx$$

No marks will be given for using the rules of anti-differentiation.

- 3. **[6 marks]** Find the area of the region completely enclosed by the graphs of f(x) = 2x and $g(x) = x^2 x + 2$.
- 4. **[6 marks]** Each month, the quantity demanded x (in tens of units) of allergen-friendly cupcakes is related to the unit price p (in dollars) by the demand function D(x) = -0.5x + 20, and the supply function S(x) = 0.1x + 5.
 - a) Find the unit market price at equilibrium.
 - b) Find the consumers' surplus if the unit market price is set at equilibrium.
- 5. **[5 marks]** Use Simpson's Rule with n = 4 to approximate <u>to 3 decimal places</u> the value of the definite integral

$$\int_{0}^{8} \frac{20}{x^3 + 1} dx$$

6. [20 marks] Solve the following integrals:

a.
$$\int \left(\sec^2 3x - \frac{5}{\sqrt{1-x^2}}\right) dx$$

b. $\int \frac{3x^5}{(x^3+5)^3} dx$

c. $\int (x+5) \cos 5x \, dx$

d.
$$\int \frac{x^2 - 2x + 5}{(x - 2)(x^2 + 1)} dx$$

7. [6 marks] Evaluate the limit, if it exists:

$$\lim_{x \to 1^+} \left(\frac{3}{\ln x} - \frac{3}{x-1} \right)$$

8. [6 marks] Evaluate the integral if it converges, or show that it diverges:

$$\int_{2}^{\infty} \frac{4}{\sqrt{x+7}} dx$$

- 9. **[6 marks]** Given the initial condition y(1) = -2, use separation of variables to find the particular solution of the differential equation: $xy'(2y^2 + 5y) = 3y \ln x$
- 10. [6 marks] Find the third Taylor Polynomial of the function $f(x) = e^{-2x+1}$ at $x = \frac{1}{2}$.
- 11. **[5 marks]** Determine if the <u>sequence</u> $\{a_n\} = \left\{\frac{2-e^{3n}}{4e^{3n}+5}\right\}$ converges or diverges.
- 12. [7 marks] Show that the following series converges, and then find its sum:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{5^{n-2}}$$

13. **[15 marks]** Determine if each of the following series is convergent or divergent. State the test used.

a)
$$\sum_{n=1}^{\infty} \frac{21n^8 + 8n^2 - 5}{-12 + 6n^3 + 3n^8}$$

b)
$$\sum_{n=2}^{\infty} \frac{5}{\sqrt[3]{n^2-2}}$$

c) $\sum_{n=1}^{\infty} ne^{-n^2}$

Answers

- 1. Average sales are 2,809.24\$
- 2. $\frac{115}{6}$
- 3. Area is 0.17 units^2
- 4. a) $\bar{p} = 7.50$ \$
 - b) 1,562.50\$
- 5. 19.941
- 6. a) $\frac{1}{3} \tan 3x 5 \arcsin x + C$ b) $\frac{-1}{x^3 + 5} + \frac{5}{2(x^3 + 5)^2} + C$ c) $\frac{1}{5}(x + 5) \sin 5x + \frac{1}{25} \cos 5x + C$ d) $\ln|x - 2| - 2 \arctan x + C$ 7. $\frac{3}{2}$
- 8. The integral diverges.

9.
$$y^2 + 5y = \frac{3}{2}(\ln x)^2 - 6$$

10.
$$P_3(x) = 2 - 2x + 2\left(x - \frac{1}{2}\right)^2 - \frac{4}{3}\left(x - \frac{1}{2}\right)^3$$

11. The sequence converges. (It has a limit of $\frac{-1}{4}$).

12.
$$S = \frac{125}{6}$$

- 13. a) The series diverges by the divergence test. (The limit is $7 \neq 0$).
 - b) The series diverges by the comparison test (to a p-series with $p = \frac{2}{3}$).
 - c) The series converges by the integral test.