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1. Given

M =


1 2 2 −1 3 1
0 0 1 1 2 2
0 0 0 0 1 1
0 0 0 0 0 0


where M is in row echelon form.

(a) (3 marks) Find the reduced row echelon form of M.

Answer:
1 2 0 −3 0 −2
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0


(b) (3 marks) Find the solution set of the system of linear equations whose augmented matrix is M.

Answer:
(x1, x2, x3, x4, x5) = (−2−2s+3t, s, −t, t, 1) where s, t ∈ R

(c) (3 marks) Find a basis for the solution space of the homogeneous system of linear equations whose
coefficient matrix is M.

Answer:
B = {(2, 0, 0, 0, −1, 1), (3, 0, −1, 1, 0, 0), (−2, 1, 0, 0, 0, 0)}

2. (5 marks) Consider the system

2kx + (k+1)y = 2
x + y + z = 0

kx + (2k−1)y = 1

Find the value(s) of k, if any, such that the system has: a) no solutions, b) a unique solution, c) infinitely many
solutions.

Answer:
a) k = 0
b) k 6= 0 or k 6= 1
c) k = 1
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3. (3 marks) Evaluate: 0 0 4
√

2
0 1 0
4
√

2 0 0

24

Answer:64 0 0
0 1 0
0 0 64



4. (5 marks) Solve for A, if possible:

A−1
[

1 0
−2 −1

]
=

([
3 0
5 3

]
−2A

)−1

Answer:

A =

[
1 0
7 3

]

5. (5 marks) Express

A =

1 0 2
2 0 4
0 3 3


as a product of elementary matrices, Ei, and a reduced row echelon matrix, R. That is, express A as
Ek · · ·E2E1R.

Answer:

A = E3E2E1R =

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
0 0 3

1 0 0
0 0 1
0 1 0

1 0 2
0 1 1
0 0 0
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6. (5 marks) Given the following matrices:

A =

1 0 0
0 1 0
5 0 1

 , B =

1 2
2 4
1 −1

 and C =

[
2 −2 6
0 1 −3

]

Find det(X) given that X satisfies the equation (X +BC)−1 = A.

Answer:
det(X) = 8

7. (4 marks) Given
∣∣∣∣a b
c d

∣∣∣∣=−2, find
∣∣∣∣3c−d 6a−2b

2d 4b

∣∣∣∣.
Answer:
24

8. (4 marks) Given A =

x2 1 x
3 1 2
x −1 −1

 find the value(s) of x, if any, such that det(A) = 0.

Answer:
x = 3

9. (4 marks) Given A, an n×n matrix such that det(A) = 9 and

A3AT = 3A−1adj(A)

find n.

Answer:
n = 4

10. (3 marks) Find all vectors of length 2 that are orthogonal to both~u = (−2,3,1) and~v = (1,2,−3).

Answer:
±2√
195

(−11, −5, −7)
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11. (5 marks) Given the lines:

L1 : (x,y,z) = (1,2,−2) + t1(1,2,1)
L2 : (x,y,z) = (2,1,3) + t2(1,2,3)
L3 : (x,y,z) = (1,1,1) + t3(2,7,3) where t1, t2, t3 ∈ R.

Find the equation of the line which is parallel to L3 and which intersects both L1 and L2.

Answer:
(x, y, z) = (3

2 , 3, −3
2)+ t(2, 7, 3) where t ∈ R

12. (5 marks) Given the non-intersecting lines:

L1 : (x,y,z) = (1,2,−2) + t1(1,2,1)
L2 : (x,y,z) = (2,1,3) + t2(1,2,3) where t1, t2 ∈ R.

Find the shortest distance between L1 and L2.

Answer:
3
5

√
5

13. (5 marks) Find the closest point on the plane 2x+ y−3z = 1 to the point P(3,26,1).

Answer:
(−1, 24, 7)

14. (5 marks) Given the points A(1,2,−1) and B(1,1,2). Find the point C on the y-axis such that the area of the
triangle ABC is

√
10
2 .

Answer:
C =

(
0, 5

3 , 0
)

15. (4 marks) Let ~u, ~v and ~w be non-zero vectors in R3. Show that if ~u ·~v =~u ·~w =~v ·~w = 0 then {~u,~v,~w} is a
basis for R3.

Answer:
Since dim(R3) = 3 then it is sufficient to show that {~u, ~v, ~w} is linearly indpendent to conclude that
{~u, ~v, ~w} spans R3, hence is a basis of R3.
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Given c1~u+ c2~v+ c3~w =~0, and taking the dot product of both sides of the equality with~u.

~u · (c1~u+ c2~v+ c3~w) = ~u ·~0
~u · (c1~u)+~u · (c2~v)+~u · (c3~w) = 0

c1~u ·~u+ c2~u ·~v+ c3~u ·~w = 0 since~u ·~v =~u ·~w = 0
c1||~u||2 = 0 since~u 6=~0

c1 = 0

is obtained. Similarly if applied using~v and ~w then c2 = 0 and c3 = 0 is obtained. Since only the trivial
solution satisfies the linear combination that gives the zero vector, {~u, ~v, ~w} is linearly independent and
is a basis of R3.

16. Given V = {a0+a1x+a2x2 | a0+a1 = π and ai ∈R} and the following vector addition and scalar multipli-
cation:

p(x)+q(x) = (a0 +b0)+(a1 +b1−π)x+a2b2x2 and r · p(x) = ra0 +(ra1−π)x+(a2)
rx2

where p(x) = a0 +a1x+a2x2 and q(x) = b0 +b1x+b2x2.

(a) (2 marks) Determine whether the above set is closed under vector addition.

Answer:
Closed under vector addition.

(b) (2 marks) Determine whether the above set is closed under scalar multiplication.

Answer:
Not closed under scalar multiplication.

(c) (2 marks) Is V a vector space under the given operations? Justify

Answer:
Not a vector space since at least one of the ten axioms fail. Namely, closure under scalar multiplica-
tion.

17. Given B = {M1, M2, M3} a basis of W = span(B) where M1 =

[
1 2
0 1

]
, M2 =

[
1 0
0 1

]
, M3 =

[
1 2
0 −1

]
.

(a) (1 mark) State the dim(W ).

Answer:
dim(W ) = 3

(b) (2 marks) Is
[

0 0
0 0

]
∈W? Justify.
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Answer:[
0 0
0 0

]
∈W , since

[
0 0
0 0

]
= c1M1 + c2M2 + c3M3 is satisfied when c1 = c2 = c3 = 0.

(c) (2 marks) Is
[

0 0
1 0

]
∈W? Justify.

Answer:[
0 0
1 0

]
/∈W since

[
0 0
1 0

]
= c1M1+c2M2+c3M3 gives rise to the inconsistent equation c10+c20+

c30 = 1.

(d) (3 marks) Show M =

[
1 2
0 3

]
∈W and find the coordinates of M relative to the basis B. That is, find

(M)B.

Answer:

M =

[
1 2
0 3

]
= c1M1 + c2M2 + c3M3 is satisfied when c1 = 2, c2 = 0 and c3 = −1, hence (M)B =

(2,0,−1).

18. Determine whether the following statements are true or false for any n×n matrices A and B. If the statement
is false provide a counterexample. If the statement is true provide a proof of the statement.

(a) (3 marks) If A2 = 0 then A = 0.

Answer:

False, if A =

[
0 0
1 0

]
then A2 = 0 but A 6= 0.

(b) (3 marks) If A is symmetric and skew-symmetric1 then A = 0.

Answer:
True, by the premises AT = A and AT =−A, it follows that

AT = AT

A = −A
2A = 0
A = 0

(c) (3 marks) If AAT = A then A is symmetric.

Answer:
True, since AT = (AAT )T = (AT )T AT = AAT = A.

1A is said to be skew-symmetric if AT =−A.
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(d) (3 marks) If A2 is an elementary matrix then A is an elementary matrix.

Answer:

False, if A=

[
−1 0
0 −1

]
then A2 = I which is an elementary matrix but A is not an elementary matrix.

(e) (3 marks) If A and B are invertible then A and B are row equivalent.

Answer:
True, the reduced row echelon form of A and B is I. Hence there exists a finite sequence of elementary
row operations that when applied on A result in I. And a second finite sequence of elementary row
operations that when applied on B result in I. If the first sequence of elementary row operations
is applied on A followed by the inverse elementary row operations applied in reverse order of the
second sequence of elemtary row operations then B is obtained. Hence A and B are row equivalent.


