DAWSON COLLEGE DEPARTMENT OF MATHEMATICS FINAL EXAMINATION

LINEAR ALGEBRA 201-NYC-05 (Science) Fall 2018

Time: 3 hours

Examiners: O. Diaconescu, A. Douba, Y. Lamontagne, V. Ohanyan, S. Shahabi B. Szczepara

Student Name:

Student ID Number:

This examination contains 10 problems.

Each problem is worth the same amount and each part of each problem is worth the same amount.

1. Given the following matrix:

#	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	
Term	
Grade	

$$A = \begin{bmatrix} 3124 \\ 1020 \\ 3102 \end{bmatrix}$$

- a) Solve the linear system whose coefficient matrix is the matrix A and which has a particular solution (1, 0, -1, 0).
- b) Solve the linear system whose augmented matrix is the matrix A using the inverse of its coefficient matrix.

2. Consider the following system:

$$kx - y - kz = 2k + 1$$
$$kx - ky - 2z = k + 1$$
$$kx - y + kz = 4k + 3$$

For what values of k, if any, the system has: a) no solution, b) a unique solution, c) infinitely many solutions.

3. Find all matrices *A* such that:

a)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A + A \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 2 \end{bmatrix}$$
 b) $A(3I_3 - 2A)^{-1} = \begin{vmatrix} 103 \\ 010 \\ 001 \end{vmatrix}$

4. a) A matrix A is said to be *orthogonal* if $A^{-1} = A^T \lor$, *equivalently*, *if* $AA^T = A^T A = I$. If A is anorthogonal matrix with integer entries show that every row of A has exactly one nonzero entry which is equal to ± 1 .

b) If A and B are invertible matrices of the same size show that adj(AB)=(adj(B))(adj(A))

5. a) Find all unit vectors parallel to the plane x+2y+3z=5 and the XY-plane.

b) Find the point P on the plane $(x, y, z) = (0, 1, 4) + s(0, 6, -4) + t(-1, -1, 1)(s, t \in R)$ which is closest i the the origin.

6. a) Show that if A is an $n \times n$ skew-symmetric matrix then $B^T AB$ is also skew-symmetric for any $n \times n$ matrix B. (A matrix A is called *skew-symmetric* if $A^T = -A$.

b) If A and B are 3×3 matrices such that $A B^{T} = I \wedge det(A) = 2$, find $det(A^{2}B)$.

- 7. Given the line L:(x, y, z) = (2, 2, 3) + t(1, -1, -3), the plane $\mathscr{P}: 3x-2y+2z=7$ and the point A(1, 1, 1).
 - a) Find parametric equations of the line which contains the point A, intersects the line \mathscr{S} and which is parallel to the plane \mathscr{P} .
 - b) Find parametric equations of the line which contains the point *A* and which intersects the line *L* at the *i* angle.
- 8. Let $V_n = \left[A \in M_{n \times n} \lor A^T = -A \right]$.
 - a) Show that V_n is a subspace of $M_{n \times n}$.
 - b) Find a basis and the dimension of V_3 .

9. a) Show that $[2x+5,x^2-3x+1,x^2+x]$ is a basis of P_2 and find the coordinates of the vestor $5x^2-x+7$ relative to this basis.

b) Find all values of t such that [(1, -t, 2), (t, 3, -1), (3t, 5, -4)] is a linearly independent set of vectors in \mathbb{R}^3 .

10. Determine whether the following statement is true or false. Justify your answer with a proof or a counterexample.

a) The point (1,2,1) is between planes $6x-3y+6z=-3 \land 4x-2y+4z=2$.

b) $W = [(x, y, z) \in \mathbb{R}^3 \lor xy = 0 \land yz = 0]$ is a subspace of \mathbb{R}^3 .

ANSWERS:

1. a)
$$|(1+2t, -8t, -1-t, t)|t \in R|$$
 b) $(-2, 8, 1)$

2. a)
$$k=0 \lor k=1$$
 b) $k \ne 0 \land k \ne 1$ c) there is no such k
3. a) $A = \begin{bmatrix} 0 & \frac{7}{4} \\ 1 & \frac{1}{2} \end{bmatrix}$ b) $\begin{bmatrix} 101 \\ 010 \\ 001 \end{bmatrix}$

4. a) Hint: Use the definition of orthogonal matrix. b) Hint: Write adjA in terms of A^{-1} .

5. a)
$$\pm \left(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}, 0\right)$$
 b) (1,2,3)

6. a) Hint: Use Properties of transpose operation. b) 2

7. a)
$$x=1+6t$$
, $y=1-4t$, $z=1-13t$ b) $x=1+\frac{17}{11}t$, $y=1+\frac{5}{11}t$, $z=1+\frac{4}{11}t$
8. a) Hint: Use the theorem. b) $\begin{pmatrix} 010\\-100\\000 \end{pmatrix}$, $\begin{pmatrix} 001\\000\\-100 \end{pmatrix}$, $\begin{pmatrix} 000\\001\\0-10 \end{pmatrix}$ is the basis and $dim(V_3)=3$

9. a) Hint: Use the theorem. The coordinates are (1,2,3). b) $[t \in R | t \neq -1 \land t \neq -7]$

10. a) False b) False