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This examination contains 10 problems.

Each problem is worth the same amount and each part of each problem is worth the
same amount.

1. Given the following matrix:



3124
A=|1020
3102
a) Solve the linear system whose coefficient matrix is the matrix A and which has a
particular solution (1, 0, -1, 0).
b) Solve the linear system whose augmented matrix is the matrix A using the inverse of
its coefficient matrix.

2. Consider the following system:

kx —y—kz=2k+1
kx —ky—2z=k+1
kx —y+kz=4k+3

For what values of &, if any, the system has: a) no solution, b) a unique solution, c) infinitely
many solutions.

3. Find all matrices A such that:

103
o |1 Hasrall 151 4 b) A(31,—2A) '=|010
o 1] o 172 2 001

4. a) A matrix A is said to be orthogonal if A~ =A" v equivalently ,if AA"=A" A=1I.
If Aisanorthogonal matrix with integer entries show that every row of A has exactly one
nonzero entry which is equal to +1.

b) If A and B are invertible matrices of the same size show that
adj|AB|=(adj|B)(adj|A))

5. a) Find all unit vectors parallel to the plane x+2 y+3z=5 andthe XY -plane.

b) Find the point P on the plane (x,y,z|=(0,1,4|+s(0,6,—4]+t(—1,—1,1]s,teR|
whichis closest (. the the origin.

6. a) Show that if A is an n x n skew-symmetric matrix then BT AR is also skew-symmetric
forany nx n matrix B. (A matrix A is called skew-symmetricifA"=— A {,
b) If A and B are 3 x 3 matrices such that A B"=1 A det| A|=2, find det (A*B].

7. Given the line L:(x,y,z|=(2,2,3)+t(1,—1,-3], the plane P: 3x—2 y+2z=7 and
the point A(1,1,1).
a) Find parametric equations of the line which contains the point A, intersects the line &
and which is parallel to the plane 9P.
b) Find parametric equations of the line which contains the point A and which intersects
the line L at the { angle .

8.LetV,=AeM,. VA'=—A|
a) Show that V  is a subspace of M, .
b) Find a basis and the dimension of V/;.



9. a) Show that {2 x+5,x"—3x+1 ,x2+x} is a basis of P,and find the coordinates of

the vestor 5x°— x +7relative to this basis.
b) Find all values of t such that |(1,—¢,2),(¢,3,—1/,(3t, 5,—4)] is a linearly independent set
of vectors in R>.
10. Determine whether the following statement is true or false. Justify your answer with
a proof or a counterexample.
a) The point (1,2,1) is between planes 6 x—3 y+6z=—3A4x—2y+4z=2.
b) W:{(x,y,z) = R3\/Xy:0/\yzz()} is a subspace of R*.

ANSWERS:
L.a)|(1+2t,~8¢,-1-¢,t)[t e R| b)(-2,8,1)

2. a)k=0Vk=1 b) kZ0Ak#1 c) there is no such k

7
0 2 101
3. a) A= 1 b) 010
1 5 001

4. a) Hint: Use the definition of orthogonal matrix. b) Hint: Write adjA in terms of A ™!,

2 1
5. a) *(—=,——F=.,0) b)(1,2,3
: (¢5 V5 ) B )
6. a) Hint: Use Properties of transpose operation. b) 2
17 5 4
7. = =1—- =1- b =1+—t,y=1+—t,z=1+—t
a) x=1+6t,y=1—-4t,z=1-13t b) x 11 y 11 z 11

010 | [ 001 | [ 000
8. a) Hint: Use the theorem. b) {|=100,| 000 |,| 001 | is the basis and dim|V,|=3

000 | [—100] |0—10

9. a) Hint: Use the theorem. The coordinates are (1,2,3]. b) {t S R|t¢—1/\t¢—7}

10. a) False b) False



