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Calculus ITI
201-BZF-05, Sections 01,02

May 24, 2019 14:00 pm —17:00 pm
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Student ID Number

e Carefully read and fill out the cover sheet (name, ID
number) and sign the integrity declaration.

e All questions are to be answered directly on the
examination paper in the space provided.

e Solve the problems in the booklet provided clearly
identifying each question and show all your work
clearly.

e Only calculators Sharp EL531, X, XG and XT
approved by department of mathematics are
permitted.

e This examination consists of 20 problems.

e There are 11 pages including the cover page.

e Please ensure that you have a complete examination
before starting.

e This exam must be returned intact.
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[5 marks] Question 1. Find a power series representation and its interval of convergence for
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[5 marks] Question 2. Find the sum of the series );;—; ;77—::—1—
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[5 marks] Question 3. Approximate the sum of the series Y=y

1/1500.
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[5 marks] Question 5. Given the curve with parametric equations

x = t2, y = t* +t, t=>1

d? .
prove that E;—Jzi < 2 at all points on the curve.
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[5 marks] Question 6. Sketch the curve with polar equation r = 2 c0s(28),0 <0 < er-




[5 marks] Question 7. Find the length of the curve with parametric equations

x = cos(v/t), y = sin(v¢), 0<t<mn?/4
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[5 marks] Question 8. Find the arc length parametrization for the helix with equation
x = 3cos(t), y=3sin(t), z=3t, 0<t<3.
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[5 marks] Question 9. Prove that the curve with the equation r(t) = (cost,sint,t?), t = 0
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[5 marks] Question 10. Find an equation for the tangent line to the curve r(t) = (-1—, t2,t7%) at

the point (1,1,1).
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[5 marks] Question 11. Study the continuity of the function

xylog(1+x%y?)
fle,y) = g x2+y? A (y) # (0.0 at the point (0,0).

0, if(x,y)=1(0,0)
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[5 marks] Question 12. Find the maximum and minimum values of the function

f(x,y,2) = x + y + z under the constraint x? + y2 4 z2 = 2,
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[5 marks] Question 13. Find all critical points of f(x,y) = x* +y* — 2xy + 1 and classify
them.
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[5 marks] Question 14. Prove or disprove: the function f(x,y,z) = /xyz is differentiable at
(0,0,0).
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[5 marks] Question 15. Prove that the function z = cos(x + bt) — sin(x — bt) is, for any real
number b, a solution of
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[5 marks] Question 16. Find an equation for the tangent plane to the surface

x% 4+ y?% + z* — 3x%y%2z7 = 0 at the point (1,1,1).
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[Smarks] Question 17. Compute the double integral ff ¥ sin(xy)dA where

=[1,2] x [0, 7].
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[Smarks] Question 18. Find the volume of the tetrahedron bounded by the plane 1Y
2
—z = —2 + 3x + 4y and the three coordinate planes.
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[Smarks] Question 19, Find the volume of the solid that lies inside the sphcre x2+y?+z2 =4
and inside the cylinder x2 + y? = 1. T
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[Smarks] Question 20. Prove that [[f. e~y 2 gy < 1—? where

E={(x,y2)|x*+y*+2z%<1}.

(Hint: you may use spherical coordinates x = psing@cos 8, y = psingsinf, z = pcos ¢ for
which dV = p?sin @ dpded8.)
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