Dawson College Mathematics Department

Calculus-II 201-203-DW Winter - 2019

Friday, May 17, 2019 9:30 am – 12:30 pm

Student Name: _	
Student I. D. #:	
structor Name:	

Instructors: C. Farnesi, I. Rajput, A. Jimenez, A. Hindawi

20-Marks

Q-1) Find the following integral;

a)
$$\int 3x^5 \left(x^3 - 1\right)^4 dx$$

b)
$$\int \frac{x+2}{x(1+9x^2)} dx$$

c)
$$\int \frac{\ln x}{x^2} dx$$

d)
$$\int_{1}^{4} \frac{\cos\left(\frac{2\pi}{x}\right)}{x^2} dx$$

6-Marks

Q-2) Find the average value of the function $f(x) = x e^{9-x^2}$ on the interval [1,3].

6-Marks

Q-3) Zunera Baby line of products estimates that the daily marginal cost function associated with producing fancy baby dresses is $C'(x) = 0.006x^2 - 0.01x + 5$, and the daily fixed cost incurred in producing these dresses is \$150. What is the total cost in producing the first 200 dresses?

6-Marks

- Q-4) The demand equation for a certain make of toys is given by $p = 160 0.2x^2$, where p is the unit price in dollars and x is the quantity demanded in units of a hundred. The supply function for these toys is given by p = 4x, where p is the unit price in dollars and x stand for the number of toys that the supplier will put on the market, in units of a hundred. Determine
 - a) the market equilibrium.
 - b) the consumers' surplus at market equilibrium

5-Marks

Q-5) Find the limit:
$$\lim_{x \to 0^{+}} \frac{8 + (x - 2)^{3} - 3\sin 4x}{3x - e^{3x} + \cos 2x}$$

6-Marks

Q-6) Use the limit definition of the definite integral (Riemann sums) to evaluate $\int_0^3 (12x^3 - 5x + 7) dx$.

6-Marks

Q-7) Find the area of the region completely enclosed by the graphs of the functions

$$f(x) = 2x^2 - 5x + 5$$
 and $g(x) = x^2 + 2x - 1$

5-Marks

Q-8) Evaluate the improper integral: $\int_{e^2}^{\infty} \frac{dx}{x(\ln x)^3}$

5-Marks

Q-9) Use separation of variables to solve the differential equation e^{2y} $y' = \sin(x+\pi)$, subject to the initial condition y = 0 when $x = \pi$. Leave your answer in implicit form.

5-Marks

Q-10) Use the Simpson's rule with n=4 to approximate the value of the definite integral. Round the final answer in three decimal places. $\int_{-1}^{6} e^{x} \ln |x| dx$

5-Marks

Q-11) Find the sum of the convergent series
$$\sum_{n=1}^{\infty} \frac{4+3^n}{4^{n+1}}$$

5-Marks

Q-12) Find the third Taylor Polynomial of the function $f(x) = e^{2x} - \sin(3x) + 7$ at x = 0.

5-Marks

Q-13) Find the limit of the sequence to check its convergence or divergence $\left\{\frac{\ln(n+2)}{\sqrt{n}}\right\}$.

15-Marks

Q-14) Test the following series for convergence or divergence. State the test used.

a.
$$\sum_{n=1}^{\infty} \frac{4n}{n^3 + 7}$$
 b.
$$\sum_{n=1}^{\infty} \frac{(2n+1)^2}{2n^2 + 3n + 1}$$
 c.
$$\sum_{n=3}^{\infty} \frac{\ln n}{n}$$

Name:

I.D.#

You must include this sheet in your booklet when you return your exam.

INFORMATION PAGE

$$\sum_{k=1}^{n} 1 = n, \qquad \sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \qquad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$CS = \int_0^{\overline{x}} D(x) dx - \overline{p} \cdot \overline{x} \qquad or \qquad CS = \int_0^{\overline{x}} \left[D(x) - \overline{p} \right] dx$$

$$PS = \overline{p} \cdot \overline{x} - \int_0^{\overline{x}} S(x) dx$$
 or $PS = \int_0^{\overline{x}} \left[\overline{p} - S(x) \right] dx$

Trapezoidal Rule

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + f(x_n) \right] \text{ where } \Delta x = \frac{b-a}{n}$$

Simpson's Rule

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) \dots 4f(x_{n-1}) + f(x_n) \Big]$$

where $\Delta x = \frac{b-a}{n}$ and *n* is even

Taylor polynomial

$$P_n(x) = f(a) + f'(a) \cdot (x-a) + \frac{f''(a)}{2!} \cdot (x-a)^2 + \frac{f'''(a)}{3!} \cdot (x-a)^3 + \dots + \frac{f^n(a)}{n!} \cdot (x-a)^n$$

If
$$ax^2 + bx + c = 0$$
 $(a \ne 0)$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Answers

Q-1/a)
$$\frac{(x^3-1)^6}{6} - \frac{(x^3-1)^5}{5} + C$$

Q-1/b)
$$2 \ln |x| - \ln |1 + 9x^2| + \frac{1}{3} \arctan(3x) + C$$

Q-1/c)
$$-\frac{\ln x + 1}{x} + C$$

Q-1/d)
$$-\frac{1}{2\pi}$$

$$Q-2) \qquad \frac{e^8 - 1}{4}$$

Q-4) a)
$$(20, \$80)$$

Q-5)
$$\frac{12}{13}$$

Q-6)
$$\frac{483}{2}$$

$$Q-7) \qquad \frac{125}{6} \left(unit\right)^2$$

$$Q-8) \qquad \frac{1}{8}$$

Q-9)
$$\frac{1}{2}e^{2y} = -\cos(x+\pi) + \frac{3}{2}$$

Q-11)
$$\frac{13}{12}$$

Q-12)
$$P_3(x) = 8 - x + 2x^2 + \frac{35}{6}x^3$$

Q-13)
$$\lim_{n \to \infty} \frac{\ln(n+2)}{\sqrt{n}} = 0, \quad Convergent$$

Q-14/b) Divergent by nth term test

Q-14/c)
$$\sum_{n=3}^{\infty} \frac{\ln n}{n}$$
 Divergent by Integral Test